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We present the results of an experimental investigation of the striking flow structures
that may arise when a vertical jet of fluid impinges on a thin fluid layer overlying
a horizontal boundary. Ellegaard et al. (Nature, vol. 392, 1998, p. 767; Nonlinearity,
vol. 12, 1999, p. 1) demonstrated that the axial symmetry of the circular hydraulic
jump may be broken, resulting in steady polygonal jumps. In addition to these
polygonal forms, our experiments reveal a new class of steady asymmetric jump forms
that include structures resembling cat’s eyes, three- and four-leaf clovers, bowties and
butterflies. An extensive parameter study reveals the dependence of the jump structure
on the governing dimensionless groups. The symmetry-breaking responsible for the
asymmetric jumps is interpreted as resulting from a capillary instability of the circular
jump. For all steady non-axisymmetric forms observed, the wavelength of instability
of the jump is related to the surface tension, σ , fluid density ρ and speed Uv of the
radial outflow at the jump through λ=(74 ± 7)σ/(ρU 2

v ).

1. Introduction
The circular hydraulic jump may arise when a fluid jet falling vertically at high

Reynolds number strikes a horizontal plate. Fluid is expelled radially, and the layer
generally thins until reaching a critical radius at which the layer depth increases
abruptly (figure 1). Predictions for the jump radius based on inviscid theory were
presented by Rayleigh (1914). The dominant influence of fluid viscosity on the jump
radius was elucidated by Watson (1964), who developed an appropriate description of
the boundary layer on the impact plate. Subsequent theoretical studies of the circular
jump have focused principally on describing the boundary layer separation and the as-
sociated dynamic pressure distribution behind the jump (Bowles & Smith 1992; Bohr,
Dimon & Putkaradze 1993; Bohr, Putkaradze & Watanabe 1997; Higuera 1994, 1997;
Ellegaard et al. 1996; Yokoi & Xiao 2000, 2002; Watanabe, Putkaradze & Bohr 2003).
While substantial progress has been made, the complexity of this free-surface flow
problem has precluded the development of a complete understanding of the problem.
A review of studies of the circular hydraulic jump is presented by Bush & Aristoff
(2003), who elucidate the influence of surface tension on its radius.

Both Craik et al. (1981) and Liu & Lienhard (1993) noted asymmetric instabilities
in circular hydraulic jumps, and suggested the importance of surface tension in the
frontal instability; however, no mechanism for instability was proposed. Moreover,
as their working fluid was water, the resulting asymmetric jumps were irregular and
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Figure 1. A schematic illustration of the experimental apparatus. Fluids were pumped through
the source nozzle with a prescribed flux Q. The outer depth H was controlled by an outer
wall whose height was adjustable.

unsteady. Liu & Lienhard (1993) characterized the dependence of the resulting un-
steady jump forms on the governing dimensionless groups. The observed dependence
on the jump Weber number clearly indicated the significance of surface tension on
the jump stability.

Ellegaard et al. (1998) identified that a striking instability may transform the
circular hydraulic jump into steady regular polygons. Experiments were conducted
with ethylene glycol and a source nozzle of radius 0.5 cm at elevations of 1–5 cm above
the lower boundary ejecting fluxes between 30 and 50 ml s−1. The dependence of the
jump planform on the nozzle height and flux rate was reported by Ellegaard et al.
(1999); however, the dependence of the flow structure on the governing parameters
was not fully elucidated. While a suggestion was made that the jump forms could be
understood if an effective line tension was ascribed to the jump, no clear mechanistic
explanation of the instability was given. We here extend the experimental study of
these authors in order to gain further insight into the problem.

In § 2, we describe the experimental technique employed in our study, and in § 3
describe the variety of jump shapes observed in our exploration of parameter space.
In § 4, we identify the dimensionless groups that govern the system, and detail the
dependence of the jump form on these parameters. The dependence of the mean
jump radius of the asymmetric forms is investigated in § 5. A scaling argument for
the dependence of the wavelength of instability of the steady asymmetric jumps on
the governing parameters is proposed in § 6.

2. Experimental technique
Figure 1 is a schematic illustration of our experimental apparatus. Fluids were

pumped through the flowmeter and source nozzle, resulting in a falling jet that impac-
ted the centre of a circular glass target plate of diameter 36 cm. The nozzle height was
varied between 1 and 5 cm above the target plate. Beyond the hydraulic jump, the fluid
ultimately spilled over the edges of the reservoir, and was recycled through the pump.
The reservoir depth H was controlled by an adjustable outer wall and measured with
a micrometer point gauge 3 cm from the outer edge of the reservoir. The asymmetric
jump structures were extremely sensitive to any variations from horizontal; con-
sequently, great care was taken in levelling the system in order to ensure that the
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reservoir spilled uniformly over the bounding outer wall. The system was levelled to 1
part in 24 000 by adjusting its three support legs, and measuring the deflection from
horizontal of the impact plate and reservoir rim with a Sterret level. The position of
the jump was measured from radial gradations on the target plate surface.

The variable flow pump (Cole Parmer, Model 75225-00) was capable of fluxes in
the range of 0–100 ml s−1 for the fluids examined in our study. The flow rate was
measured with an AW Company Model JFC-01 digital flowmeter accurate to 0.1 %
over the range considered. Viscosity measurements accurate to 0.14 % were made
with Cannon-Fenske Routine tube viscometers. Fluid density was measured with
an Anton-Parr 35N densitometer, accurate to 0.01 %. Surface tension measurements
accurate to 0.1 dyn cm−1 were made with a Kruss K10 surface tensiometer. The bulk
of the experiments were conducted with glycerol–water solutions with viscosities
in the range 1–35 cS, densities 1.0–1.2 g cm−3 and surface tensions between 60 and
70 dyn cm−1. We also used a pure mineral oil (Crystal Plus 70FG Oil, STE Oil
Company Inc.), for which ρ = 0.83 g cm−3, ν = 11 cm2 s−1 and σ = 29.7 dyn. Finally,
we incorporate the data of Ellegaard et al. (1999), who used ethylene glycol for which
ρ = 1.1 g cm−3, ν = 11 cm2 s−1 and σ = 47.7 dyn cm−1. Outer layer depths were varied
from 0.2 to 1.5 cm.

Four nozzles were used, of radii 0.2, 0.38, 0.45 and 0.5 cm. The inner nozzle surfaces
were smoothed and tapered near their exits in order to suppress turbulence and
encourage laminar outflow in the parameter regime considered. While the details
of the cross-sectional flow profiles were not measured, the nozzles were designed
according to the specifications of McCarthy & Malloy (1974) with a narrow taper in
order to flatten the profiles. Their suggestion is that the jet profiles will be relatively
flat provided the taper angle lies between 45◦ and 70◦. A recent study by Bergthorsson
et al. (2005) demonstrates that the jet profiles will in general depend on the nozzle
length, taper, and the jet Reynolds number and that, in certain ideal situations, the
three may be varied in order to ensure a flat jet profile. While tuning these control
parameters in order to ensure that the jet profiles are perfectly flat was not practical
for our study, we worked from the assumption that the jet profiles are flat to leading
order. A series of experiments was performed to test the sensitivity of the jump
structure to the nozzle design. Turbulence generated in the nozzle by the addition
of an obstacle was evident in the irregular, perturbed surface of the jet and that
of the resulting jump. Two nozzles with identical outlet radii (0.32 cm) but different
tapers (45◦ and 70◦) were examined, and found to produce indistinguishable jump
forms. Intervening taper angles were examined through addition of mylar sheets inside
the nozzle with the sharper taper; over the range of Reynolds numbers and tapers
considered, no qualitative changes in jump form were observed.

Flow speeds could be measured by tracking microbubbles introduced in the source
fluid using a Redlake Motionscope Model PCI 8000S high-speed video camera.
Adequate resolution of the bubbles typically required that we record at 500 frames
per second with 0.001 s exposure times. The video footage was analysed using Midas
Version 2.08 particle tracking software.

3. Observations
The variety of strictly circular jumps that may arise has been documented by Craik

et al. (1981) and Liu & Lienhard (1993). Owing to its relevance to the jump stability,
we recall here the transitions of the circular jump that arise as the outer depth is
increased, from Type I to IIa and IIb jumps (see figure 2). We follow Ellegaard et al.
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(a) Type I

(b) Type IIa

(c) Type IIb
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Figure 2. A schematic illustration of the progression in flow structure of the circular laminar
hydraulic jump prompted by increasing the outer depth. The steady symmetry-breaking
instabilities emerge exclusively from the Type II jumps.

(1996) in the Type I and II nomenclature, and Liu & Lienhard (1993) in distinguishing
between Types IIa and IIb. The Type I jump is the standard circular hydraulic jump
in which the surface flow is everywhere radially outward; the interior flow is radially
outwards everywhere except within a recirculating region just downstream of the
jump (Tani 1949). The Type IIa jump is similarly marked by a subsurface ‘separation
bubble’, but also by a region of reversed surface flow adjoining the jump. As the outer
depth increases further, the jump transforms into a Type IIb jump marked by a tiered
or ‘double-jump’ structure. A key observation is that the axial symmetry-breaking
instabilities reported by Ellegaard et al. (1998, 1999) and observed in our study occur
exclusively for Type II jumps. At higher flow rates, the jumps become irregular and
time-dependent, and may ultimately be marked by air entrainment at their base.
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(a) (b)

(d)(c)

Figure 3. A number of jump shapes observed in the polygon regime: (a) triangle, (b) square,
(c) pentagon, (d) n-gon.

At the highest flow rates examined, the flow within the thin film becomes turbulent
(Watson 1964). We here restrict our attention to the case of laminar upstream flow
in which there is no air entrainment at the jump.

The 0.5 cm nozzle radius corresponds to that used in the study of Ellegaard et al.
(1998, 1999) and yielded the most regular polygonal jumps. Examples of the polygonal
jump structures observed in our experiments are presented in figure 3. Varying the
nozzle size and test fluid allowed us to explore a new regime marked by steady stable
structures that included oval-, cat’s eye-, bowtie-, butterfly- and clover-shaped jumps,
henceforth all referred to as the ‘clover regime’. Shapes arising in the clover regime are
presented in figure 4. We note that the jumps arising in the clover regime are marked
by the tiered structure characteristic of the Type IIb jumps. Some polygonal and clover
forms were subject to weak time-dependent fluctuations, typically characterized by a
net rotational motion of the entire jump structure, or the propagation of wave-like
disturbances towards a single point on the jump.

The flow that accompanies the polygonal jumps is described by Ellegaard et al.
(1999), and was visualized here through tracking microbubbles suspended in the flow.
An example of bubble traces apparent in the corner region of a polygonal jump
are illustrated in figure 5. The axial symmetry within the radially expanding film is
evidently broken when the flow reaches the jump. Fluid is partially redirected along
the jump front and so funnelled towards the corners of the jump, resulting in radial
jets emerging from the corners. In the clover regime, the vortices adjoining the jump
have a limited vertical extent, thus giving jumps in the clover regime their two-tiered
structure (figure 2c).
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(a) (b)

(c) (d)
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Figure 4. Jump shapes observed in the clover regime: (a) cat’s eye, (b) bowtie, (c) butterfly,
(d) three-leaf clover, (e) four-leaf clover, (f ) octagonal clover. Note the tiered double-jump
structure characteristic of the Type IIb regime.

The significance of surface tension for the frontal instability was clearly and simply
demonstrated. The flow parameters were set in order to obtain a steady pentagonal
jump of mean radius 2 cm. A small volume (1–2 drops) of surfactant (either a super-
wetting agent or a commercial detergent) was added to the reservoir fluid, and resulted
in the three qualitative changes apparent in figure 6. First, the jump expanded, with
its mean radius increasing by approximately 20 %. Second, the polygonal instability
was suppressed, and the jump assumed a circular form. Third, the jump became
significantly less abrupt. The increase in mean radius is consistent with the theoretical
predictions of Bush & Aristoff (2003) for the influence of the curvature force. The
suppression of the polygonal form clearly indicates the importance of surface tension
on the jump stability, the nature of which will be discussed in § 6.
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Figure 5. A streak image illustrating bubble tracks in the neighbourhood of the corners of
the hydraulic jump. The shutter speed was 1/100 s; the image thus illustrates clearly the high
speed of the flows. Note the regions of recirculation adjoining the jump and the vigorous
vortices adjoining the corners.

(a) (b)

Figure 6. The influence of surfactant on the polygonal hydraulic jump. (a) A polygonal
hydraulic jump generated with a glycerol–water solution. (ρ = 1.1 g cm−3, Q = 51 cm3 s−1,
H = 0.65 cm, ν =10 cS, a =0.5 cm). (b) The same configuration after the addition of a surfactant
(liquid Dove) to the reservoir, which reduces the surface tension from 70 to 40 dyn cm−1. The
addition of surfactant causes the polygonal jump to relax into a circular form, and to expand
slightly. Radial gradations indicate intervals of 0.5 cm.

4. Parameter study
We consider a nozzle of radius RN ejecting fluid downward at uniform speed U0;

the associated flux is Q = πR2
NU0. The jet descends a distance Z in a gravitational

field −gẑ before striking a rigid horizontal boundary covered by fluid of outer
depth H (figure 1). The source conditions may be eliminated from consideration by
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straightforward application of Bernoulli’s equation. However, nozzle source conditions
generally lead to variance from the predictions of inviscid theory (e.g. Bergthorsson
et al. 2005); consequently, the jet radius at impact is measured with calipers. We
further assume that the jet velocity profile at the point of impact is flat (independent
of radius), and that the overlying air is not dynamically significant.

We thus consider a vertical jet of radius a and flux Q of fluid with viscosity ν and
density ρ impacting a horizontal boundary covered by fluid of depth H at uniform
speed U = Q/(πa2). The free surface is characterized by a constant surface tension
σ . There are thus seven physical variables, a, H , Q, ν, ρ, g and σ expressible in
terms of three fundamental units. Dimensional analysis indicates that the system may
be uniquely prescribed by four dimensionless groups. We choose the jet Reynolds
number Re =Q/(νa), the jump Weber number We= ρQ2/(σH 3), the Bond number
B = ρga2/σ , and the relative magnitudes of the impacting jet radius and the outer
layer depth, a/H . We proceed by elucidating the dependence of the form of the jump
structure on these four governing dimensionless groups. We note that the commonly
used Froude number is expressible in terms of the Bond and Weber numbers.

Two-dimensional projections of the four-dimensional parameter space are presented
in figures 7 and 8. Each corresponds to a series of experiments represented by a plane
in figure 9, and performed with a fixed nozzle radius and fluid, and so a constant
B . Figure 7(a) illustrates the dependence of jump structure on Re and We for a
source nozzle of radius 0.5 cm located a distance 2.5 cm above the impact plane
ejecting a glycerol–water solution with viscosity ν = 10 cS and density ρ = 1.12 g cm−3.
The corresponding Bond number is B = 4.62. Each diagonal trace indicates the
influence of increasing flux Q at a fixed outer depth H . Critical H values for the
transitions between the various flow forms are indicated. At the lowest H value
examined, 0.45 cm, the jumps assume the circular Type I planform. When the layer
depth is increased to H = 0.57 cm, the jumps assume the Type IIa planform, and
so are marked by a recirculating vortex and reversed surface flow adjoining the
jump. Further increasing H prompts the symmetry-breaking instability responsible
for polygonal jumps (figure 3). Polygons with number of sides between 3 and 10
occupy well-defined regions of parameter space, with the larger number of sides
being observed at higher flow rates and mean jump radii. We note that the transitions
between different polygonal shapes occur at roughly constant Weber numbers. For
H > 0.83 cm (H/a > 4.13), no jumps arise: the jet simply plunges into the reservoir,
typically entraining air in the process. The corresponding projection of these data
onto the (a/H, We)-plane is presented in figure 7(b).

Figure 8 illustrates an equivalent regime diagram describing a series of experiments
conducted with a nozzle of radius 0.2 cm located at height 2.5 cm above the plane and
ejecting a glycerine–water solution of viscosity 32 cS. As the outer layer depth increases
progressively, the jump evolves from circular Type I to Type II forms, and then to an
asymmetric form. In this parameter regime, the asymmetric forms are those arising
in the clover regime (figure 4): cat’s eyes, bowties, butterflies or clovers. At the largest
H values examined, the jump is turbulent: air is entrained at the base of the jump,
giving rise to irregular, unsteady motion such as that observed by Liu & Lienhard
(1993) in water. The corresponding projection of these data onto the (a/H, We)-
plane is presented in figure 8(b).

A series of three-dimensional regime diagrams illustrating the dependence of the
jump structure on (Re, We, a/H ) is presented in figure 9. Each regime diagram
corresponds to a particular Bond number. For the glycerine–water solutions, whose
densities and surface tensions varied by no more than 5 %, the constant Bond number
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Figure 7. Two-dimensional projections of the surface of data obtained at B = 4.62 and
presented in figure 9(a). All jumps were formed by a glycerine–water solution of viscosity
10 cS being released from a nozzle of radius 0.5 cm at a height 2.5 cm above the impact plate.
(a) The dependence of the jump form on Re= Qa/ν, and We = ρQ2/(σH 3). Different symbols
denote the various jump shapes: �, three-sided; �, four-sided; ∗, five-sided; �, six-sided; ×,
seven-sided; �, eight-sided; �, nine-sided; �, 10-sided; �, Type I; �, Type II; +, no jump.
(b) The analogous dependence of jump structure on a/H and We.

corresponds to a fixed nozzle diameter. For the experiments conducted with mineral
oil, nozzles were designed specifically to match B with either the glycerine-water
experiments (figure 9a) or the experiments of Ellegaard et al. (1998, 1999) (figure 9d).
The data fall onto distinct surfaces such as those whose two-dimensional projections
are presented in figures 7 and 8, each corresponding to a different working fluid. For
the sake of clarity, we classify jumps as being either Type I, II, polygons, clovers
or turbulent, and do not distinguish between the various types of polygonal and
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Figure 8. Two-dimensional projections of the surface of data obtained at B = 0.74 and
presented in figure 9(c). All jumps were formed by a glycerine–water solution of viscosity 32 cS
being released from a nozzle of radius 0.2 cm at a height 2.5 cm above the impact plate. (a) The
dependence of the jump form on Re= Qa/ν, and We= ρQ2/(σH 3). Different symbols denote
the various jump shapes: �, three-leaf clover; ×, four-leaf clover; ∗, oval; �, bowtie; �, Type
I; �, Type II; +, no jump. (b) The analogous dependence of jump structure on a/H and We.

clover-shaped jumps. This distinction is made in figures 7 and 8 for the data planes
indicated, respectively, in figures 9(a) and 9(c). We note that the polygonal and clover
jump regimes are both confined to limited regions of parameter space. Moreover,
the polygonal jump regimes observed at B =6.53 (figure 9d) in mineral oil, and by
Ellegaard et al. (1998, 1999) in ethylene glycol are in adjacent regions of parameter
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Figure 9. Regime diagrams indicating the dependence of the jump structure on the governing
parameters (We,Re, a/H ) at fixed Bond numbers. (a) B = 4.62. Individual data planes
correspond to fluids with viscosities indicated. The data plane at ν = 10 cS is detailed
in figure 7. Data were obtained with glycerol–water solutions with a nozzle radius of
0.5 cm. The mineral oil data were obtained with a nozzle of radius 0.38 cm, which allowed
Bond number equivalence. (b) B = 2.67 corresponding to a nozzle radius of 0.35 cm.
Individual data planes correspond to glycerol–water solutions with viscosities indicated.
(c) B = 0.74 corresponding to a nozzle radius of 0.2 cm. Individual data planes correspond to
glycerol-water solutions with viscosities indicated. The data plane at ν =32 cS is detailed in
figure 8. (d) B = 6.53. The polygonal data of Elegaard et al. (1999), obtained with ethylene
glycol, is presented in pink. The remaining data were obtained in our laboratory with mineral
oil and a nozzle radius of 0.45 cm.

space. We note that the correspondence is not exact owing to the different properties
of mineral oil and ethylene glycol: the surface representing Ellegaard et al.’s data is
offset slightly relative to that obtained in our study.

We note that the jump structures were subject to strong hysteretic effects: the
point of transition from one jump shape to another depended on whether the flow
rate was increasing or decreasing. For each experiment, once the source parameters
were established, we disrupted the jump structure by blowing on it; this initialization
eliminated hysteresis from consideration.

5. Jump radius
Watson (1964) elucidated the dominant influence of viscosity on the circular

hydraulic jump, and Bush & Aristoff (2003) calculated the relatively small correction
to Watson’s (1964) theoretical prediction for the jump radius required by consideration
of surface tension. Viscosity results in vorticity diffusing from the lower boundary
until spanning the fluid layer at a radial distance rv =0.315aRe1/3 from the point of
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impact. For r < rv , the surface speed is that of the incoming jet U , and the jump
radius is defined by

RjgH 2a2

Q2

(
1 +

2

Bj

)
+

a2

2π2RjH
= 0.10132 − 0.1297

(
Rj

a

)3/2

Re−1/2, (5.1)

where Bj = ρgRj�H/σ is the jump Bond number and �H the height of the jump.
For r > rv , the surface speed is diminished relative to the incoming jet speed,

U (r) =
27c2

8π4

Q2

ν(r3 + l3)
(5.2)

where c = 1.402 and l = 0.567aRe1/3, and the jump radius is given by

RjgH 2a2

Q2

(
1 +

2

Bj

)
+

a2

2π2RjH
= 0.01676

[(
Rj

a

)3

Re−1 + 0.1826

]−1

. (5.3)

Finally, the layer depth in this outer regime (r > rv) is given by

h(r) =
2π2

3
√

3

ν(r3 + l3)

Qr
. (5.4)

We note that, owing to the influence of viscosity, the layer depth has a minimum at
a critical radius that may be computed from (5.4).

Equations (5.1) and (5.3) were originally presented in Bush & Aristoff (2003)
and differ from those of Watson (1964) only through inclusion of the O(B−1

j ) surface
tension correction on the left-hand side. They rest on the same assumptions concerning
the flow structure, specifically that the ratio of layer depths directly down- and
upstream of the jump is large (H/h � 1), the flow is unidirectional in the thin film,
and radial gradients in the hydrostatic pressure upstream of the jump are negligible
relative to viscous stresses. Finally, Watson’s prediction for jump radius rests on the
assumption that the radial flow speed is constant beyond the jump, an assumption
generally expected to be violated owing to separation beyond the jump, and to be
least adequate for the Type II jumps. Watson’s predictions for the circular jump
radius were found by a number of investigators to be adequate for laminar jumps of
large radius and depth, but to yield poor agreement in the opposite small-jump limit
(Olson & Turkdogan 1966; Ishigai et al. 1977; Nakoryakov, Pokusaev & Troyan 1978;
Bouhadepf 1978; Craik et al. 1981; Errico 1986; Vasista 1989; Liu & Lienhard 1993),
where the surface tension correction becomes significant (Bush & Aristoff 2003). This
small-jump regime is precisely that examined by Ellegaard et al. (1998, 1999) in which
the polygonal jumps arise; consequently, we anticipate the relevance of this surface
tension correction to our experimental study.

An experimental investigation of the dependence of the radii of strictly circular
jumps on the governing parameters is presented in Bush & Aristoff (2003); here we
focus our attention on the asymmetric jumps. The mean radius Rj of the asymmetric
jumps was calculated from images by computing a suitable approximation to

Rj =
1

2π

∫ 2π

0

r dθ. (5.5)

For example, for polygons with number of sides n> 6, Rj was simply taken as the
mean of the minimum and maximum jump radii. Figure 10 indicates the observed
dependence of the mean jump radius Rj . In order to facilitate comparison with
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Figure 10. The dependence of the mean jump radius Rj on the governing parameters. The
solid line represents the theoretical predictions (5.1) and (5.3). The dotted line represents the
prediction of inviscid theory. Different symbols denote the various jump shapes: �, three-sided;
�, four-sided; ∗, five-sided; ×, six-sided; �, seven-sided; �, eight-sided; �, nine-sided; �, bowtie
or butterfly; �, 3-leaf clover; �, four-leaf clover. Characteristic error bars are shown.

equations (5.1) and (5.3), we plot the dependence of (RjgH 2a2/Q2)(1 + 2/Bj ) +

a2/(2π2RjH ) on (Rj/a)3Re−1. The dotted horizontal line indicates the inviscid theory,
obtained from (5.1) in the limit of Re → ∞, which is obviously inadequate in describing
our data. The solid curve represents the jump radii predicted by (5.1) and (5.3). The
mean radii of all steady structures observed, polygons and clovers, are reasonably
well-described by the theoretical predictions.

We note that the discrepancy between theory and experiments for the mean jump
radius is substantially larger than for the Type I circular jumps examined by Bush &
Aristoff (2003). We expect this discrepancy to be a consequence of shortcomings in
Watson’s description of the flow in the regime examined here. While variance of the
flow near the point of impact from purely radial violates the assumptions made in
the development of equations (5.1) and (5.3), this did not introduce substantial errors
in Bush & Aristoff’s (2003) study of the Type I jumps. Moreover, the assumption that
radial gradients in the hydrostatic pressure prior to the jump are negligible relative
to viscous stresses is valid in the small-jump parameter regime examined in our
study. We thus expect that the principal source of discrepancy between predicted and
observed jump radii is the neglect of the influence of dynamic pressure downstream of
the jump, an influence likely to be most pronounced in this regime (Bowles & Smith
1992; Higuera 1994; Yokoi & Xiao 2000, 2002). The principal source of measurement
error arose from approximations made in calculating the mean jump radii of markedly
asymmetric forms.

6. Jump stability
We propose a physical picture in which the instability of the initially circular jump

is related to the Rayleigh–Plateau capillary pinch-off of a fluid thread. Plateau (1873)
and Rayleigh (1879) demonstrated that a fluid thread bound by surface tension σ
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Figure 11. A schematic illustration of the capillary instability on a circular hydraulic jump,
viewed as a portion of the inner surface of a torus. The unperturbed jump radius is Rj and R
represents the radius of curvature of the jump in a vertical plane aligned with the mean flow.
One expects a capillary instability to yield a wavelength of pinch-off, λ, proportional to R.

will become unstable to a varicose instability in order to minimize surface energy.
The Ohnesorge number, Oh = σR/(µν), a Reynolds number based on the capillary
wave speed σ/µ, prescribes the form of pinch-off of a fluid thread of radius R and
dynamic viscosity µ = ρν (Weber 1931; Chandrasekhar 1961). At high Oh, the pinch-
off is resisted by fluid inertia, the time scale of instability is (R3ρ/σ )1/2, and the most
unstable wavelength is 9.02R. At low Oh, the pinch-off is resisted by fluid viscosity,
the time scale of instability is µR/σ , and the most unstable wavelength increases with
Oh. The jumps in our problem have characteristic height of �H ∼ 0.2–1 cm and an
Ohnesorge number of O(100); consequently, the observed wavelengths of 0.7–2.0 cm
are roughly consistent with the anticipated result of 4.51�H .

We propose a physical picture in which the jump is viewed as the inner portion of
a torus whose axisymmetry is broken by a capillary instability (figure 11). In order
to deduce the most unstable wavelength of instability, we must deduce the dominant
curvature of the unperturbed circular jump. Since Rj � �H , the curvature of the
free surface in a vertical plane aligned with the mean flow necessarily dominates that
associated with its azimuthal curvature: we thus need consider only the curvature in a
vertical radial plane, 1/R (figure 11). The shape of the jump is determined by a balance
between some combination of inertia, viscosity, gravity and surface tension. As in the
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Figure 12. The observed dependence of the wavelength of instability on the governing para-
meters in the polygon and clover regimes. The wavelength is defined as the circumference of the
jump divided by the number of sides: λ= 2πRj/n. Different symbols denote the various jump
shapes: �, three-sided; �, four-sided; ∗, five-sided; ×, six-sided; �, seven-sided; �, eight-sided;
�, nine-sided; �, bowtie; �, 3-leaf clover; �, four-leaf clover. Characteristic error bars are
shown. The solid line represents the best-fit to the scaling (6.2). If the jump curvature is simply
equal to its height �H , one expects the data to be described by the horizontal dotted line
shown.

study of Ellegaard et al. (1998, 1999), asymmetric jumps only arose as an instability of
the Type II circular jumps, that are adjoined by a toroidal vortex. In all experiments
considered in our study, the characteristic vortex Reynolds number is large; for
example, for a jump vortex with radius Rv = 2 mm and flow speed Uv = 30 cm s−1 in
a fluid of viscosity 30 cS, the vortex Reynolds number is Rev = UvRv/ν =200. One
thus expects that the dominant curvature at the jump, 1/R, will be set by a balance
between surface tension and inertia:

ρU 2
v ∼ σ/R. (6.1)

Uv is the speed in the vortex adjoining the jump, taken to be the surface speed of
the fluid layer at the base of the jump. For Rj < rv , this speed corresponds to that

of the incoming jet Uv = U , while for Rj > rv , it is defined by (5.2) evaluated at the

mean jump radius Rj . The radius of curvature of the jump is thus prescribed by
R ∼ σ/(ρU 2

v ). The theoretical description of the Rayleigh–Plateau instability indicates
that the radius of curvature of the most unstable azimuthal mode has a wavelength
proportional to R; therefore, we anticipate that

λ = C1

σ

ρU 2
v

, (6.2)

where C1 is a coefficient to be determined.
Figure 12 indicates the observed dependence of the wavelength of instability of the

jump on the governing flow parameters. All jump shapes observed in the polygon
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and clover regimes are included. The wavelength is computed as λ=2πRj/n, where n

is the number of sides of the jump structure. Four-leaf clovers were taken as having
eight sides, three-leaf clovers six, and bowties and butterflies four. For each data
point, rv was computed; either the incident jet speed U or (4.2) was assigned to
Uv according to the relative magnitudes of rv and Rj . The data provide satisfactory
agreement with (6.2); the best-fit line has a statistical correlation of 0.74. The constant
of proportionality in (6.2) is thus deduced to be C1 = 74 ± 7. The line corresponding
to λ= 4.51�H , the result appropriate for the pinch-off of a stationary cylinder of
diameter �H , is also plotted along with our data in figure 12. The mismatch supports
our claim that the radius of curvature is not strictly proportional to �H but, rather,
depends on the local dynamics.

It is noteworthy that the primary source of error in our prediction for the wavelength
of instability results from the discrete number of sides; specifically, the mean circum-
ference need not correspond to an integer multiple of the most unstable wavelength.
The associated errors necessarily decrease as the number of sides increases; thus there
is relatively large scatter in the data for bowtie and 3-sided jumps. Omission of these
data increases the correlation coefficient from 0.74 to 0.8. Nevertheless, the scatter in
the data apparent in figure 12 suggests that the jump instability is not the Rayleigh–
Plateau instability in its purest form. The precise dynamical balance existing at the
jump is complex, involving gravity, curvature, inertia and pressure (Bowles & Smith
1992; Higuera 1994; Yokoi & Xiao 2000, 2002; Watanabe et al. 2003). The principal
shortcoming of our simple scaling argument is the relatively crude approximation
made in deducing the dominant curvature of the jump, specifically that it may be
obtained by balancing exclusively inertial and curvature forces.

7. Discussion
We have presented the results of an experimental investigation of the viscous

hydraulic jump. In addition to the Type I, IIa and IIb circular jumps and the steady
polygonal jump forms identified by previous investigators, we have identified a new
class of steady asymmetric jumps that arise as an instability of the tiered Type IIb
jumps, that we refer to as clovers (figure 4). Our exploration of parameter space
(figures 7–9) has underscored the limited parameter regime in which both polygonal
and clover jumps arise; this is presumably why none of these striking flow structures
had been observed prior to the experiments of Ellegaard et al. (1998).

We note that the influence of fluid viscosity on the circular hydraulic jump is
two-fold. First, viscosity acts to hasten the diffusion of vorticity across the fluid layer
and so decelerate the flow. The concomitant decrease in the jump radius necessarily
heightens the influence of surface tension on the jump. Second, viscosity acts to
regularize the asymmetric frontal structure; this is, presumably, why the stable, steady
polygonal or clover forms do not arise in water, where unsteady irregular frontal
instabilities are the norm (Craik et al. 1981; Liu & Lienhard 1993).

Our study has clearly identified the importance of surface tension in prompting
the axisymmetry-breaking instabilities observed in the circular hydraulic jump. While
the significance of surface tension for jump stability was suggested by Craik et al.
(1981) and Liu & Lienhard (1993), the mechanism for instability had not previously
been considered. Ellegaard et al. (1998, 1999) suggest that the symmetry-breaking
instability responsible for the polygonal jumps may be anticipated if one ascribes an
effective line tension to the jump; however, they did not identify the origins of such
a line tension with the surface tension. We here suggest that the instability may be
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understood as being a manifestation of the Rayleigh–Plateau pinch-off of the initially
circular jump, taken to be the inner section of a torus.

The addition of surfactant was observed to convert the polygonal jumps to circular
jumps of relatively large mean radius. The associated reduction in surface tension
results in expansion of the jump according to the theoretical developments of
Bush & Aristoff (2003), and may result in the suppression of capillary pinch-off
according to the present study. The influence of surfactant on the jump structure
is complex, however, which is why a more quantitative study of the influence of
surfactants was not undertaken. In particular, the surfactant acts to suppress motions
marked by non-zero surface divergence such as those arising in the Type II jumps.
The surfactant may thus have an impact on the jump structure not only through
decreasing the surface tension, but also through suppressing the Type II planform
that is a prerequisite for symmetry-breaking instability. The influence of surfactant
on the stability of hydraulic jumps is left as a subject for future consideration.

Our experiments indicate that the mean jump radius is adequately described by the
theory of Bush & Aristoff (2003), and that the wavelength of instability is given by
(6.2) with C1 = (74 ± 7). We note that these two results do not uniquely prescribe the
jump shape in the nonlinear regime; for example, a six-sided jump could correspond
to either a heptagon or a three-leaf clover. The non-axisymmetric jump shape may
only be inferred from the source conditions by reference to our regime diagrams
(figures 7–9). We do not expect that the complex dynamical balance arising at the
jump can be captured satisfactorily with a simple scaling: the shortcomings of the
scaling are evident in the scatter of the data. For example, one expects the downstream
flow, specifically the dynamic pressure associated with the jump vortex, to have a
significant influence on the pinch-off at the jump. Nevertheless, the scaling does
capture some of the dominant physics; this is why, presumably, it yields a reasonable
collapse of the data.

One key observation made originally by Ellegaard et al. (1998, 1999) and again in
our study is that the asymmetric forms only emerge from the Type II jumps. This we
ascribe to one of two physical effects. First, the importance of surface tension will be
most pronounced for jumps with large surface area and heightened curvature; one
expects the curvature of the interface to be most pronounced for Type II jumps owing
to the influence of the eddies adjoining the jump. Second, the presence of the vortex
will tend to destabilize the jump owing to the influence of the radial centripetal force;
the analogous destabilizing influence of rotation in the Rayleigh–Plateau problem has
been demonstrated by Hocking & Michael (1959), Hocking (1960) and Pedley (1967).

We note that many of the observed jumps are marked by sharp cusps in their corners
(e.g. figure 3a, b) as frequently arise in convergent flows dominated by viscosity and
surface tension, for example, in the four-roll mill (Joseph et al. 1991). Surface tension
typically serves to regularize the corner flows unless the flows are sufficiently vigorous
to prompt air entrainment at the cusp (Eggers 2000). Our observations indicate that
entrainment of air may arise at both the base of the jump and at the corners of
the polygonal jumps. While we have proposed capillary pinch-off as the source of
the symmetry-breaking instabilities in the hydraulic jump, the detailed calculation of
jump shapes is left as a subject for future investigation.

While the capillary instability is best known as the source of pinch-off of a cylindri-
cal fluid thread (Plateau 1873; Rayleigh 1879), it prompts analogous instabilities in a
variety of geometries; for example, in liquid menisci bound at solid edges (Langbein
1990). Figure 13 illustrates a number of free-surface flows in which symmetry-breaking
is prompted by a capillary instability. The capillary pinch-off of the toroidal rim on
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Rayleigh (1879) Savart (1833) Hosoi & Mahadevan (1999) Present study

Figure 13. Symmetry-breaking forced by capillary instabilities. (a) The classic Rayleigh–
Plateau instability prompts the pinch-off of a cylindrical fluid thread into a series of drops.
(b) Capillary instability of the toroidal rim on a radially expanding circular fluid sheet releases
discrete droplets from the sheet edge. (c) Capillary instability on the advancing front within
a partially filled cylinder rotating about its horizontal axis. (d) The transformation of the
circular jump into asymmetric forms.

a radially expanding circular fluid sheet (Savart 1833) leads to the release of discrete
droplets at the sheet edge. The hydraulic jump instability bears a resemblance to
that arising when a partially filled cylinder is rotated about its horizontal axis of
symmetry (Karweit & Corrsin 1975; Thoroddsen & Mahadevan 1997; Hosoi &
Mahadevan 1999, shown in figure 13c). The frontal instability so observed is likewise
caused by a capillary instability of a curved fluid front; however, in their flow, the
characteristic Reynolds number is small. The dominant force balance at the front is
thus between viscous stresses and capillary forces, consideration of which yields a
most unstable wavelength that scales as H (µU/σ )−1/3 where U is the speed of the
cylinder wall and H is the fluid depth. By contrast, the hydraulic jump considered
here is characterized by a high Re: the curvature of the jump and the concomitant
wavelength of azimuthal instability are prescribed by a balance between curvature and
inertial forces. Nevertheless, both systems are marked by vortical motions steepening
fronts and so promoting capillary instability.

While the majority of the observed shapes could be classified as belonging in either
circular or polygon or clover or turbulent regimes, there are a number of exceptions
and oddities. First, there is an unsteady flow regime between the polygon and fully
turbulent regimes in which the roller vortex adjoining the jump lifts off, resulting
in an apparent crown on the jump (figure 14). Second, situations arose where the
outer layer was too deep to support a hydraulic jump, but where a roller vortex
was observed to form. In certain parameter regimes, this vortex became unstable and
assumed a roughly polygonal shape. Such an instability is clearly not a manifestation
of capillary pinch-off, but may be related to the instability mechanism responsible
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Figure 14. The crown-shaped jump arising in a glycerol-water solution of viscosity 5 cS, an
intermediary between the polygonal and fully turbulent regimes.

for the break-up of a circular smoke ring into polygons (Widnall & Tsai 1977). Such
oddities are left as problems for future consideration.
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